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Abstract

A preliminary investigation was conducted regard-

ing the use of throttles for emergency flight control of

a multiengine aircraft. Several airplanes including a

light twin-engine piston-powered airplane, jet trans-

ports, and a high performance fighter were studied

during flight and piloted simulations. Simulation stud-

ies used the B-720, B-727, MD-11, and F-15 aircraft.

Flight studies used the Lear 24, Piper PA-30, and F-15

airplanes. Based on simulator and flight results, all

the airplanes exhibited some control capability with

throttles. With piloted simulators, landings using man-

ual throttles-only control were extremely difficult. An

augmented control system was developed that converts

conventional pilot stick inputs into appropriate throt-

tle commands. With the augmented system, the B-720
and F-15 simulations were evaluated and could be

landed successfully. Flight and simulation data were

compared for the F-15 airplane.

Nomenclature

CAS

c.g.

Fex

K

Kp

I,h

control augmentation system

center of gravity

excess thrust, lb

gain constant

roll rate feedback gain, deg/sec

pitch rate feedback gain, deg/sec
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K,y

K_

LDP

PLA

PLF

VC

A

sideslip feedback gain, deg

flightpath angle feedback, deg

bank angle feedback gain, deg

landing difficulty parameter

power lever angle, deg

power for level flight

calibrated airspeed, knots

change

Introduction

In an emergency, throttles may be used for aug-

menting or replacing aircraft flight control systems.

Aircraft flight control systems are extremely reliable.

Multiple control surfaces, hydraulics, sensors, con-

trol computers, and control cables are used to achieve

high levels of control system redundancy and reliabil-

ity. However, during extremely rare occasions poten-

tially disastrous flight control system failures do occur.

This is particularly true for military airplanes operat-

ing in a hostile environment. At such times, any other

form of flight control, including propulsion, would
be welcome.

Some aircraft with multiple engines may be con-

trolled to a rudimentary degree with the throttles. The

use of differential thrust induces yaw and the dihe-

dral effect results in roll. Many transport airplanes ex-

hibit nose-up pitching moments from thrust increases

that may be useful for pitch control. In addition, most

airplanes have positive speed stability (if speed in-

creases, the airplane will climb, and if speed decreases,

the converse occurs). Airplanes have flown with total

hydraulic system failures for substantial periods us-

ing only engines for control. (1,2) In addition, engine



controlaugmentedtheflightcontrolsin aL-1011air-
planethatexperiencedahardoverstabilizerfailure. (3)

The NASA Dryden Flight Research Facility (NASA

Dryden) has been the site for conducting prelimi-

nary flight, ground simulator, and analytical studies of

propulsion system use for control. The objective has

been to determine the degree of control power avail-

able with the throttles for various classes of airplanes.

In addition, the development of possible control modes

for future airplanes has been investigated. The most

likely control failures involve partial loss of flight con-
trols. However, in most cases, it is assumed that a com-

plete failure occurred with the flight control surfaces

(elevator, rudder, aileron) in the locked position.

Several airplanes were studied, based primarily on

availability. Simulation studies were conducted on the

B-720, MD-11, F-15, and B-727 aircraft. Cursory

flight evaluations were flown in the Lear 24, PA-30,

and F-15 airplanes. These airplanes showed some de-

gree of throttles-only controllability. An augmented

control system for the B-720 and F-15 airplanes was

designed and tested using piloted ground simulators.

The augmented system design and its application to

the B-720 airplane is included in Ref. 4.

This paper will present some preliminary ideas and

information on the feasibility of using engine thrust to

supplement or replace the flight control system. Se-

lected results from the piloted simulator studies of the

B-720, B-727, MD-11, and F-15 airplanes will be pre-

sented, including the augmented control results for

the F-15 airplane. Limited flight evaluations on the

Lear 24, PA-30, and F-15 aircraft are discussed. Hight

and simulator test results will he compared for the

F-15 airplane. Also presented are simple methods for

correlating propulsive control capability with airplane
characteristics.

Principles of Engines-Only Controls

Engine thrust can be used to control the heading

and flightpath of a multiengine airplane. This section

presents the principles of engines-only flight control;

first, for roll control, then for the more complex pitch

control, and finally, for speed control.

Yaw-Roll

Differential thrust generates sideslip, which through

the normal dihedral effect present on most airplanes

results in roll. The dihedral effect tends to be larger

with greater wing sweep angle. Roll from differential

thrust is controlled to establish a bank angle, which

results in a turn and change in aircraft heading. Some

airplanes exhibit a coupled mode between roll and yaw

called dutch roll, in which the nose traces an elliptical

path. Dutch roll can cause control difficulties.

Pitch

Pitch control caused by throttle changes is more

complex. There are several effects that may be present,

depending on the aircraft characteristics. The desired

result is to stabilize and control the vertical flightpath.

Phugoid

The phugoid is the longitudinal long-period oscil-

lation of an airplane. It is an approximately constant

angle-of-attack motion trading speed for altitude. The

degree of oscillation in speed and altitude relates to

the speed stability. Once excited by a pitch or thrust

change, the phugoid will be initiated with a period of

approximately 1 min and it may or may not damp nat-

urally. The period is a function primarily of speed and

not aircraft design. Properly sized and timed throt-

tle inputs can be used to damp unwanted phugoid
oscillations.

Flightpath Angle Change Caused by

Speed Stability

The initial response to the phugoid may be used

for flightpath control. Most airplanes exhibit positive

speed stability. A thrust increase will cause, in the

short-term, a speed increase that will cause a lift in-

crease, which will cause the flightpath angle increase.

In the longer term, the phugoid will cause speed to

oscillate around the initial velocity. Angle of attack

remains essentially constant. The degree of speed sta-

bility, and the resulting pitch motions are affected by

aircraft configuration and the center of gravity (c.g.)
location.



Pitching Moment Caused by Thrust Line Offset

If the engine thrust line does not pass through the

c.g., there will be a pitching moment introduced by

thrust change. For many transport aircraft, the thrust

line is below the c.g. Increasing thrust results in a nose-

up pitching moment, with the magnitude being a lin-

ear function of the thrust change. This is the desirable

geometry for throttle-only control, because a thrust

change immediately starts the nose in the same direc-

tion needed for the long-term flightpath angle change.

High-mounted engines result in this effect fighting the

speed stability effects. Pitching moment caused by
thrust will cause a change in the trimmed angle of at-

tack and airspeed as well as changing the long-term

flightpath angle.

Flightpath Angle Change Caused by the Vertical

Component of Thrust

If the thrust line is inclined to the flightpath, an in-
crease in thrust will result in a direct increase in verti-

cal velocity, that is, rate of climb. This also will occur

at constant angle of attack. For a given aircraft con-

figuration, this effect will increase as angle of attack

increases (that is, as speed decreases).

Speed Control

Once the normal flight control surfaces (elevator,

rudder, aileron) become locked, the trim airspeed

of most airplanes is affected only slightly by en-

gine thrust. Retrimming to a different speed may be

achieved by other techniques. These techniques in-

clude: moving the c.g., lowering the flaps and landing

gear, and by using stabilizer trim, if available. Gen-

erally, the speed needs to be reduced to an acceptable

landing speed; this implies developing nose-up pitch-

ing moments. Methods for accomplishing this include

moving the c.g. aft and selective lowering of flaps.

In aircraft with more than two engines, speed can be

reduced by increasing the thrust of low-mounted en-

gines. The retrimming capability will vary widely be-

tween airplanes.

Flight Research Studies

Some preliminary flight research studies were con-

ducted on three airplanes covering a range of airplane

types and sizes: the F-15, the Lear 24, and the PA-30
aircraft.

F-15 Air Superiority Fighter

The F-15 airplane (McDonnell Douglas Corpora-

tion, St. Louis, Missouri), Fig. 1 and Table 1, is a high

performance fighter with a maximum speed capability

of Mach 2.5. It has a high wing with 45 ° of leading-

edge sweep and twin vertical tails. It is powered by two

F100 (Pratt and Whitney, West Palm Beach, Florida)

afterburning turbofan engines mounted close together

in the aft fuselage. The thrust-to-weight ratio is very

high, approaching 1 at low altitudes. The engine re-

sponse is fast, 3 sec from idle to intermediate power.

The F-15 airplane has a mechanical flight control sys-

tem augmented with a high-authority electronic con-

trol augmentation system. Hydraulic power is required

for all flight control surfaces.

Flight tests used the NASA F-15 airplane. Although

the engines are very close to the centerline, the F-15

airplane exhibits significant rolling as a result of dif-
ferential thrust. Roll rates with full differential thrust

are approximately 7.5 deg/sec at 300 knots, increas-

ing to 17 deg/sec at 170 knots. In pitch, at a speed

of 300 knots, there is no pitching moment as a re-

sult of thrust and the speed stability is neutral. When

trimmed for 170 knots, there is significant pitch au-

thority. Figure 2 shows the pitch axis response, at

170 knots, for a change in power setting from power

for level flight (PLF) to intermediate (maximum non-

afterburning) power. During the first second there is

essentially no airplane response. Total thrust for the

two engines is shown; the engines respond rapidly,

with most of the thrust change occurring within 1.5 sec.

As speed increases, pitch rate increases, reaching a

value of 2 deg/sec at 10 sec after the throttle advance.

The flightpath angle has increased by 5 °, 5 sec after

the throttle advance. At approximately 12 sec, the

phugoid response causes the speed to begin dropping;

it would eventually return, in an oscillatory fashion, to

the trim speed.

In flight tests, three pilots evaluated the controllabil-

ity of the F-15 airplane with throttles only, leaving the

stick and rudder centered. The control augmentation

system (CAS) was turned off, because it tended to re-

move sideslip caused by differential thrust. With the

CAS off, and using only manual throttle control, pilots

could roll the airplane, hold a bank angle and assigned

heading. If the airplane was trimmed at 170 knots,

adequate pitch control was available to hold altitude

within approximately 100 ft.



If a flightcontrolfailureoccurredathigherspeeds,
somemethodwouldbenecessaryto retrimtheF-15
airplaneto lowerspeeds.Useof fueltransfertomove
thec.g. aft wouldbe oneway to developnose-up
pitchingmoments,whichwouldslowtheF-15air-
plane. Movingfrom nominalto full-aft c.g.would
slowthetrim airspeedby approximately100knots.
Therampsofthevariablecaptureinletsarealsouseful
ingeneratingnose-upmoments.Thesewouldallowan
approximately30-knotreductionin trim airspeedif
placedin theemergencyfull-upposition.Extensionof
thelandinggearresultsin almostnochangein speed
ontheF-15airplane.

Lear 24 Executive Jet Transport

The Lear 24 airplane (Gates Learjet, Wichita,

Kansas), Fig. 3 and Table 1, is a twin-engine busi-

ness jet. The low-mounted wing has 13° of sweep.

The engines, GE CJ610 turbojets (General Electric,

Lynn, Massachusetts) with 2,900-1b thrust each, are

mounted high on the aft fuselage. The airplane has

a T tail arrangement. Maximum weight is 11,800 lb.

The Lear 24 airplane has a thrust-to-weight ratio of ap-

proximately 0.5. The turbojet engines respond rapidly

to throttle changes, 2.5 sec from idle to full thrust.

The airplane used in this first evaluation was the

Calspan variable stability airplane. It is equipped with

the basic Lear 24 mechanical control system, including

an electric stabilizer pitch trim capability. In addition,

there are hydraulic actuators that add electrical inputs

from the variable stability system to the mechanical

system.

The basic Lear 24 characteristics with throttles-only

control were investigated at a speed of approximately

200 knots. Roll control power is large, roll rates in

excess of 25 deg/sec can be obtained with full differ-

ential thrust, even with the yaw damper engaged. Time

to bank from level flight to 30_ was 4 sec.

The basic Lear 24 pitch control capability was also

investigated. In contrast to the roll axis, pitch control

with thrust was very difficult. Because of the high en-

gine placement, a thrust increase caused a nose-down

pitch. Eventually, the speed stability would bring the

nose back up. Time to achieve a 5 ° pitch increase was

21 sec. Reducing thrust caused a slight pitchup, fol-

lowed by a pitch down as speed decreased. It took

23 sec to achieve a 5° pitch decrease. It was extremely

difficult to control pitch. The phugoid was very dif-

ficult to damp with throttle inputs. Despite this, the

Lear 24 airplane was flown in up-and-away flight for

20 min using only the throttles. Roll and heading

were controlled precisely, and altitude was maintained
within 500 ft.

PA-30 Piston-Powered Light Twin-Engine Plane

The Piper PA-30 airplane (Piper Aircraft Corpora-
tion, Vero Beach, Florida), Fig. 4, is a light twin-

engine four-place airplane. It has a low-mounted

unswept wing, and the engines are mounted ahead of

the wing in nacelles. Maximum weight is 3,600 lb.

The engines are the Lycoming IO-320 (Textron

Lycoming, Williamsport, Pennsylvania; formerly

Avco Lycoming) rated at 160 hp each.

The PA-30 airplane was flown with throttles only

and it had significant control power. However, it was

very difficult to control. The roll control on the PA-30

airplane is highly nonlinear. It appears that the major

rolling moment is caused by reducing the throttle on

one side until the blowing over the wing is sharply re-

duced. The linear response to differential thrust seen

on other jet-powered airplanes was not present. Max-

imum roll rates were approximately 10 deg/sec, but

came only with one engine near idle power. Pitch con-

trol is difficult. There is adequate control power avail-

able from speed stability, but the longitudinal phugoid

is hard to damp. Overall, it was possible to maintain

gross control of heading and altitude, but landing on a

runway would be extremely difficult.

Simulator Studies

Piloted simulator studies of engines-only flight con-

trol capability were conducted on the B-720, B-727,
MD-11, and the F-15 aircraft. One task evaluated was

"up-and-away" control. This was the ability to control

heading to within a few degrees, and to control alti-

tude to within +200 ft. The other task was landing on

a runway.

B-720 Commercial Jet Transport

The Boeing 720 airplane (Boeing Company, Seat-

fie, Washington), Fig. 5, is a four-engine transport

designed in the late 1950's. It has a 35 ° swept

wing mounted low on the fuselage, and four en-

gines mounted on pods below and ahead of the wing.

The engines are Pratt and Whitney (East Hartford,

Connecticut) JT3C-6 turbojets. The airplane is

equipped with a conventional flight control system



incorporatingcontrolcablesandhydraulicboost. It
alsoincorporatesa slow-rateelectricstabilizertrim
system.Theflapsareelectricallycontrolled.

A high-fidelityB-720engineeringsimulationwas
availableat NASADrydenfrom theControlledIm-
pactDemonstration(CID) flightprogramconducted
jointly by NASAandtheFederalAviationAdminis-
tration(FAA).TheB-720simulationincludednonlin-
earaerodynamicderivatives,includinggroundeffect.
Thesimulationwasmodifiedto permitlockingof all
theflightcontrolsurfacesatadesiredcondition.This
wouldsimulatethesituationthatresultsinmoremod-
emairplaneswithatotalhydraulicsystemfailure.The
throttleswerethenavailablefor flight control. The
simulationwasmechanizedusingatwin-enginefighter
engineeringcockpit.Becauseof this,inboardandout-
boardenginesoneachsidewerecontrolledby a single

throttle. However, the pitching and yawing moments

caused by each of the four engines were modeled

individually.

A discussion of the manual throttles-only simula-

tion results and the design, development, and evalu-

ation of an augmented control system for the B-720
airplane are included in Ref. 4. The control modes are

described briefly here.

The pilot of the B-720 simulation flew manually us-

ing the throttles only. Good roll capability was evident,

with roll rates of approximately 20 deg/sec. Good

pitch capability also was found, with some pitching

moment because of the thrust line being below the

c.g., and also pitching moment caused by speed sta-

bility. Pitch rate at 160 knots was 1.8 deg/sec, and at

200 knots it was 1.1 deg/sec.

With this control power it was possible for a pilot

to maintain gross control, hold heading and altitude,

and make a controlled descent. However, it was ex-

tremely difficult for a pilot to make a landing on a run-

way. There was a 1-sec lag in pitch and roll before the

airplane began to respond to the throttles. Judging the

phugoid damping was difficult, and the lightly damped

dutch roll was a major problem in roll and heading con-

trol. Although a few pilots did develop techniques for

successful landings using manual throttles, most were

unable to make repeatable successful landings.

An augmented control mode, Fig. 6, was devel-

oped for the B-720 airplane. The control mode used

pilot stick inputs, with appropriate gains and feed-

back parameters, and drove the throttles. The pi-

lot commanded a flightpath angle, and the throttles

were driven collectively to achieve the flightpath an-

gle. The control for the roll axis was mechanized us-

ing differential throttle to command yaw, and hence,

through dihedral effect, roll. Two types of roll con-

trol were evaluated. In one, bank angle was com-

manded by lateral stick position, in the other, roll
rate was commanded. The dutch roll mode was well-

damped by the roll rate command system, but there

was an unstable spiral mode. The bank angle com-

mand mode was less effective in dutch roll damp-

ing, making control more difficult, particularly in

turbulence, but it would hold a bank angle well.

Using the augmented control mode, it was possi-

ble for a pilot to make successful landings. Pilot

proficiency improved rapidly with time, as the lead re-

quired to compensate for the slow engine response was

learned. Landings without turbulence or with light tur-

bulence were generally good. With moderate turbu-

lence pilot ratings degraded, but most landings were

still successful. Pilot ratings for the manual and aug-

mented control modes are presented in Ref. 4.

Another control mode developed was an "autoland"

system that uses instrument landing system (ILS) er-

ror signals to command the engines. The automatic

system makes small corrections to null errors before

they become appreciable. This better accommodates

the slow response of the engines and provides good and

repeatable landings. The autoland system can handle

moderate levels of turbulence much better than a pilot

can. Reference 4 provides a more detailed description

of the B-720 airplane, the augmented control system,

the autoland system, and the results of the piloted sim-
ulation studies.

B-727 Commercial Jet Transport

Figure 7 shows the Boeing 727 three-engine trans-

port airplane, which is capable of carrying up to 150

passengers. It has a swept wing and a T tail. The three

Pratt and Whitney (East Hartford, Connecticut) JT8D

low-bypass-ratio turbofan engines are mounted in the

aft fuselage. The two outboard engines are mounted

on short pylons, while the center engine is located in

the aft fuselage and has an inlet above the fuselage.

The engine response was slow (3 sec) from idle to an

engine pressure ratio of 1.2, then fast (3 sec to reach

full thrust).



TheB-727engines-onlycontrolwasevaluatedin
a motion-basedsimulationat theNASA AmesRe-
searchCenterataspeedof approximately200knots.
In anevaluationof engines-onlyroll rate,withtheout-
boardenginesatfull differentialthrust,roll ratesof4to
5deg/secwereobtained.Therewasa1-seclagbefore
theroll ratewasappreciable.Fromaninitialwings-
levelcondition,it took11secto reacha30° bank. In

4 sec, the bank angle was approximately 12°. This roll

capability, while much less than the F-15 or B-720 air-

planes, was surprisingly large considering the fuselage

mounting of the engines.

Pitch control power was also evaluated. There is

significant pitching authority with thrust on the B-727

airplane. With the airplane trimmed and throttles set

for level flight, nose-up pitch rates at full thrust were

approximately 0.75 deg/sec; nose-down pitch rates at

idle were 0.4 deg/sec.

These pitch and roll control power values are
smaller than those for the B-720 simulation and slow

in initial response. Precise control of flightpath angle

using throttles was difficult. Use of electric stabilizer
trim was more successful.

The airplane was flown using differential engine

thrust for bank angle and electric trim in pitch, and

gross control was possible. After a 10-min period of

familiarization, it was possible to hold heading within

approximately 2 ° and altitude to within 100 ft.

Landings were attempted using differential throttle

and electric trim. Neither of the evaluation pilots could

successfully land the airplane on the runway by them-

selves. The low roll rate and roll control lag made

it extremely difficult to remain lined up with the run-

way. It was possible to keep control, but not with suffi-

cient precision to land on a runway. It was possible to

make a well-controlled touchdown assuming an "infi-

nite" (unlimited length and width) runway.

Improved roll control was achieved by reducing the

center engine throttle to idle; the higher thrust and

the faster thrust response of the outboard engines im-

proved directional control. Splitting the control task

between two pilots also helped. One pilot would fly

pitch with electric trim, while the other pilot used dif-

ferential throttles for roll and heading control. Even

with this technique, it was not possible to make con-

sistent landings on the runway.

F-15 Air Superiority Fighter

A simulator study was performed on the NASA F-15

airplane. The simulation was a high fidelity nonlinear

piloted simulation valid over the full flight envelope. It

was flown in a simulator cockpit with actual F-15 stick

and throttles. A visual scene, including the Edwards

runways, was provided on a video monitor.

The initial simulation results showed roll rates of 10

to 20 deg/sec over much of the flight envelope, and

essentially no pitch capability at 300 knots. Below

250 knots, the simulator showed increasing pitch au-

thority. This was partly because of the increasing angle

of attack, which would provide an increasing compo-
nent of thrust in the lift direction, and also increased

speed stability.

Roll characteristics were evaluated, and found to be

good. There was no roll response during the first sec-

ond, but roll rate increased rapidly thereafter. Roll

rates from flight test results were compared to NASA

Dryden simulator roll rates. Figure 8 shows maximum

roll rate as a function of airspeed (VC) for idle power

on one engine and intermediate power (maximum non-

afterburning) on the other engine. At VC = 300 knots,

the flight values were approximately 75 percent of

the simulation values. To resolve this discrepancy,

the McDonnell Douglas F-15 piloted simulator was

also used, and roll rates were similar to the NASA

simulation. Unmodeled effects of unequal engine

power settings in both simulators may be the cause
of this discrepancy. At lower speeds, this discrep-

ancy was smaller, and the roll rates were higher. At

170 knots, the flight roll rates were 17 deg/sec, while

the simulator yielded values of 20 deg/sec. The engine
thrust lateral offset was reduced to make the simulator

roll rate match the flight roll rate for all data shown
hereafter.

Pitch rate was also evaluated in the simulator. There

was no pitch response during the first second. At
170 knots, when the throttle was increased from PLF

to intermediate power, the maximum pitch rate was

2 deg/sec. Going from PLF to idle, the pitch rate

was -0.6 deg/sec. Figure 9 compares the flight

and simulation pitch results as a function of speed,

and shows excellent agreement. The low pitch-down

capability relative to the pitchup capability is because

the throttle setting for PLF is much clo.ser to idle than
to intermediate.



Boththeroll rateandthepitchratecapabilityin-
creaseasspeeddecreases.Thisis believedto result
from thedecreasingstabilityof theairplaneasthe
speeddecreases.Theenginethrustmomentsareap-
proximatelyindependentof speed.Therestoringmo-
mentsresultingfromstabilityareafunctionof speed,
hence,thecontroleffectivenessof thethrottleswould
increase.

ThepilotedF-15simulationwaslaterusedinaland-
ing study.With theCASturnedoff, thepilotsused
throttles-onlycontrolto fly approachesandlandings
usingthevideodisplayof the15,000-ft-longEdwards
runway.Startingat atrimmedconditionat 170knots
and5milesout,eightconsecutivelandingapproaches
weremade.Figure10showsresultsof thefirstsev-
erallandingsfor twopilots,plottedwithalandingdif-
ficultyparameter(LDP).TheLDPis aparameterthat
is thesumof, attouchdown,sinkratein ft/sec,abso-
lutevalueof bankangleindegrees,andatouchdown
dispersionpenalty.Thedispersionpenaltywas0 on
therunway,5 within300ft of therunway,andup to
30forlandingsmorethan2,000ft fromtherunway,as
shown.BasedonF-15characteristics,it wasfeltthat
LDPvaluesupto 10wouldresultinalandingwithno
damage.TheLDPvaluesof 15to25wouldbesurviv-
ablebutdamagemightoccur,andLDPvaluesof 30
andabovewoulddefinitelyresultindamageandpos-
sibleinjury.

During the initial landingattempts,controlwas
extremelydifficult.Thelongitudinalphugoidwasex-
citedattheinitializingpointandwasaconstantprob-
lemthroughtouchdown.Throttleinputsto dampthe
phugoidwerehardtojudge. Rollcontrol,whilead-
equatein rate,hadthetroublesome1-seclag. The
combinedtaskwassodifficultthattheinitiallandings
hadhighsinkratesandlargetouchdowndispersions.
Thisresultedin LDPvaluesin the"certaindamage"
category.

A typicaltimehistoryof oneof thesemanualland-
ingsis shownin Fig. 11.Thiswasasecondlanding
attemptbyapilotwithnopreviousthrottles-onlyland-
ingexperience.Astherateof sinkincreased,thepi-
lot madea properthrottleincrease,but in doingso,
induceda roll to theright. He thencorrectedwith
a roll to theleft. Rateof sinkagainincreased,and
goingthroughanaltitudeof 500ft, a largethrottle
inputwasmadefrom53 to 63sec. Thisresultedin
arapidpitchupwith rateof climbbecomingpositive.

Throttleswerethenreducedtoidle,andasmallbank
anglecorrectionwasmadebacktowardthe runway.

Again, rate of sink increased, this time a smaller throt-

tle input was tried. However, it was insufficient to pre-

vent hitting the ground at 18 ft/sec, 500 ft right and

2,000 ft short of the threshold, for a LDP of 46.

After a few manual throttles-only landings, the

proper lag compensation technique for bank angle con-

trol was learned. This made it possible to concentrate

on pitch control, which is primarily phugoid damping.

Techniques for finding the proper degree of throttle

input were learned after approximately five landings.

For each pilot, the last landings shown in Fig. 10 had

acceptable sink rates and bank angles, and were made

on the runway. These landings demonstrated the sharp

learning curve associated with throttles-only control.

In addition, the landings illustrated that adequate con-

trol power was available to land the F-15 airplane. Fig-
ure 12 shows another time history of the eighth manual

throttle landing made by one pilot. There is still signif-

icant throttle activity initially. But a proper-sized throt-

tle input at 66 sec effectively damped the phugoid. A
6 ft/sec rate-of-sink landing with 2° of bank was made

on the center line 2,200 ft from the threshold for an

LDP value of 8. Considerable throttle activity is evi-

dent in the last 20 sec as the pilot worked hard to arrest

the rate of sink without ballooning.

The augmented mode developed for the B-720

airplane (4) was incorporated in the F-15 simulator.

Gain changes were made to account for the differences

in throttle range and thrust, but the basic control con-

cept remained the same as shown in Fig. 6. All the

roll feedback gains were set to zero, making the lateral
stick command differential thrust directly. Perform-

ance in the augmented mode was much improved. The

first three augmented landings made by two pilots are

shown in Fig. 13, with the data from Fig. 10. One pi-

lot lacked previous time in the F-15 aircraft and sim-

ulator, while the other had not flown the F-15 aircraft

with throttles only. These augmented landings showed

LDP values of 2 to 7, illustrating the much-improved

capability. A third time history, Fig. 14, shows the

pilot flying his first F-15 simulator landing with aug-
mented control. The throttle excursions are smaller,

rate of sink is well-controlled, and the landing is again

on the center line 2,000 ft down the runway. Some

overcontrol in roll is evident, but adequate perfor-

mance was obtained.



Landingsweremadewith turbulencelevelsup to
moderate,with crosswinds,andflying qualitiesre-
mainedgood. Theeffectsof variationsin c.g.were
alsoinvestigated.With full aft c.g.(30percent),the
maximumpitchratedecreasedtolessthan0.8deg/sec.
Thismadethelandingtaskmuchmoredifficult.

All the landingsdiscussedpreviouslyweremade
froma trimmedinitial flight conditionin the 150to
220knotspeedrange.If a flightcontrolfailureoccurs
athigherspeeds,methodssuchasc.g.controlarenec-
essaryto decreasespeedto wherelandingwouldbe
practical.Simulatedlandingsweremadefrominitial
flightconditionsasfastas350knotsusingfueltrans-
ferandinletrampcontrolto slowto anacceptableap-
proachspeed.

MD-11 Commercial Transport

The MD-11 airplane (McDonnell Douglas Corpo-
ration, Long Beach, California) is a large, long-range

commercial transport. It has a 35 ° sweep low-mounted

wing. It is powered by three high-bypass turbofan en-

gines, two are mounted in underwing pods, and the
third is mounted in the base of the vertical tail. The

engines are slow to respond at low thrust levels, but

respond well above 30-percent thrust.

The capability for engines-only control of the

MD-11 airplane was investigated briefly in flight sim-

ulators at 200-knots airspeed. Findings show that

substantial but confusing pitch control is available.

The center engine produces strong nose-down pitching

moment while the wing engines produce weak nose-

up pitching moment. Using only the wing engines

for pitch control results in a maximum pitch rate of

1.5 deg/sec. In roll, the use of differential thrust pro-

duces very sluggish roll control, with a maximum roll

rate of 3 deg/sec. Control capability at lower speeds

was not investigated. The capability may be larger,
based on trends of the F-15 airplane.

Up-and-away flying was possible, altitude could be

maintained, and heading held within reasonable lim-

its. The low roll rate makes runway lineup very diffi-

cult even without any turbulence or crosswind. Land-

ings were attempted in the simulator. While it was

possible to come close to the runway, it was not

possible to make repeatable controlled landings on

the runway.

Roll and Pitch Correlations

An attempt was made to correlate the control power

of the jet airplanes studied. The obvious physical pa-

rameters used were those that affect throttles-only con-

trol capability, such as weight, span, thrust, thrust off-

set, and wing sweep.

Factors enhancing roll control include: high-thrust

engines, engines mounted far from the fuselage, high

wing-sweep angles, low yaw inertia, and low weight.

Figure 15 shows a correlation developed using the pre-

viously mentioned parameters, and the observed roll

rates of several airplanes at a trim airspeed of approxi-

mately 200 knots. The parameter has engine differen-

tial thrust, thrust moment arm, and a wing-sweep pa-

rameter in the numerator and weight and wing span

squared in the denominator. The span-squared term

is a representation of the yaw and roll inertia. Data

for the airplanes studied show an approximately lin-

ear variation with roll rate, indicating that the selected

parameters include most of the significant effects.

A simple pitch rate correlation was also made, see

Fig. 16. The pitch rate correlation parameter has three

components: pitch resulting from pitch thrust moment,

pitch resulting from speed stability, and pitch resulting

from the vertical component of thrust. Excess thrust

above that required for level flight is used in this corre-

lation. The maximum pitch rate correlation also shows

an approximately linear trend.

Overall Flying Qualities

Based on the preliminary results of the flight and

simulation studies, it appears that many multiengine

airplanes can use throttles for emergency flight control.

All the airplanes tested can be flown in up-and-away

flight, with altitude and heading control possible.

There was an approximately 1-see time delay in

pitch and roll on all airplanes tested. Reference 5 in-

dicates that control system time delays of up to 1 sec

may be tolerable for landing large airplanes. Thus, the

delay in response to the throttles should not preclude

the ability to make emergency throttles-only landings.

The F-15 and B-720 airplane simulations have suf-

ficient control power available to make repeatable run-

way landings. While manual control is extremely

difficult, an augmented control system can make

8



runwaylandingsfeasible.Thesetwoairplaneshave
pitchratecapabilityin excessof 1deg/sec,androll
ratecapabilityinexcessof 15deg/sec.TheMD-11and
B-727aircraftarecontrollableforup-and-awayflight.
However,at200knotstheirroll controlcapabilityis
lessthan5 deg/sec,whichmaybetoolow for suc-
cessfulmanualthrottles-onlyrunwaylandings.Refer-
ence6indicatesthatroll ratesof morethan10deg/sec
arerequiredfor successfullandings. It is possible
that anautomaticILS-coupledcontrolsystem,such
asthatimplementedontheB-720airplanesimulation
couldaccommodateaircraftwithlowrollratecapabil-
ity.Thiswouldmakerunwaylandingfeasible.

Concluding Remarks

Severalairplaneswereevaluatedinapreliminaryin-
vestigationof theuseof throttlesforemergencyflight
control.All theairplanestestedshowedsomedegree
of usefulcontrolcapabilitywith thethrottles.All air-
planescouldbecontrolledinagrossmanner(heading
andaltitudecouldbemaintained).In mostcases,how-
ever,thepilotworkloadwouldbehigh.

All airplanestestedwerecontrollablein roll with
differentialthrottle,withmaximumroll ratesranging
from3 to 25deg/sec.In pitch,theLear24airplane
(andtheF-15airplaneatspeedsabove300knots)had
little or no usablecontrolcapability.However,the
otherairplanestestedhadusefullevelsof pitchcontrol
capability.Forall airplanestested,therewasa 1-sec
lagbetweeninitialthrottlemotionandthefirstpitchor
roll response.

Becauseof thelagassociatedwiththeenginethrust
response,andthephugoidcharacteristics,it wasvery
difficulttoachieveprecisecontrolwithmanualthrottle
control.Pilotproficiencyimprovedrapidlywith time
in some,butnotall airplanes.

Theflightandsimulationpitchandroll characteris-
ticswerecomparedfor theF-15airplane.Thepitch

ratescomparedwell,buttheflightroll ratesweresig-
nificantlylessthanthesimulationresults.Thesimula-
tionwasadjustedto matchflightfor thelandingtests.

Augmentedcontrolsystemswereevaluatedthat
usedstick commandsand feedbackparametersto
movethethrottlesduringtheF-15andB-720flight
simulations. The augmentedmodeseffectively
dampedthephugoidandimprovedtheroll character-
istics.Acceptableflyingqualitiesforemergencyland-
ingwereachieved.A first approachto simplecorre-
latingparametersbasedonaircraftphysicalcharacter-
isticswasshownto provideanapproximatelylinear
relationtopitchrateandroll rate.
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Table1. Physicalcharacteristics of the airplanes.

Airplane
F-15 Lear 24 .B-720 B-727 MD-11 PA-30

Typical mid-fuel weight, lb

Wing quarter chord sweep, deg

Wing span, ft

Wing area, ft2

Length, ft

Number of engines

Maximum thrust/engine,
sea level static, lb

35,000 11,000 140,000 160,000 359,000 3,000
45 13 35 32 35 0

43 36 130 108 169.6 35.98

608 231 2,433 1,700 3,958 178

64 43 137 153 192 25.16

2 2 4 3 3 2

13,000* 2,900 12,500 15,000 60,000 (160 hp)

*F-15 engine at intermediate power

Fig. 1 The F-15 Air Superiority Fighter.

910147
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Fig. 2 Flight data time history of response to throttle increase from PLF to intermediate; F-15 airplane, CAS off,control stick free.
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Fig. 3 The Lear 24 executive jet.

Fig. 4 The PA-30 light twin-engine airplane.
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Fig. 5

910151

The B-720 commercial jet transport.
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(a) Longitudinal control mode.
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(b) Lateral control mode.

Fig. 6 The augmented throttles-only flight control system for the B-720 airplane.
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Fig. 7 The B-727 commercial jet transport.
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Fig. 8 Effect of VC on maximum roll rate, F-15 airplane and F-15 simulation, CAS off, left engine at intermediate

power, right engine at idle.
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Fig. 10 LDP for F-I5 simulation flown with manual throttles-only control, trim airspeed of 170 knots.
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Fig. 11 Time history of throttles-only manual landing of the F-15 simulation, trim airspeed of 170 knots, pilot B's

second landing.
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Fig. 12 Time history of throttles-only manual landing of the F-15 simulation, trim airspeed of 170 knots, pilot B's

eighth landing.
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Fig. 13 LDP for F-15 simulation flown with augmented throttles-only control, trim airspeed of 170 knots.
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Fig. 14 Time history of augmented throttles-only landing of the F-I5 simulation, trim airspeed of 170 knots;

inexperienced pilot's first landing.
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Fig. 15 Maximum throttles-only roll rate correlation for full differential thrust, trim airspeed of approximately
200 knots.
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